A sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes

نویسنده

  • Per-Olof Persson
چکیده

We present a new line-based discontinuous Galerkin (DG) discretization scheme for firstand second-order systems of partial differential equations. The scheme is based on fully unstructured meshes of quadrilateral or hexahedral elements, and it is closely related to the standard nodal DG scheme as well as several of its variants such as the collocation-based DG spectral element method (DGSEM) or the spectral difference (SD) method. However, our motivation is to maximize the sparsity of the Jacobian matrices, since this directly translates into higher performance in particular for implicit solvers, while maintaining many of the good properties of the DG scheme. To achieve this, our scheme is based on applying one-dimensional DG solvers along each coordinate direction in a reference element. This reduces the number of connectivities drastically, since the scheme only connects each node to a line of nodes along each direction, as opposed to the standard DG method which connects all nodes inside the element and many nodes in the neighboring ones. The resulting scheme is similar to a collocation scheme, but it uses fully consistent integration along each 1-D coordinate direction which results in different properties for nonlinear problems and curved elements. Also, the scheme uses solution points along each element face, which further reduces the number of connections with the neighboring elements. Second-order terms are handled by an LDG-type approach, with an upwind/downwind flux function based on a switch function at each element face. We demonstrate the accuracy of the method and compare it to the standard nodal DG method for problems including Poisson’s equation, Euler’s equations of gas dynamics, and both the steady-state and the transient compressible Navier-Stokes equations. We also show how to integrate the Navier-Stokes equations using implicit schemes and Newton-Krylov solvers, without impairing the high sparsity of the matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

We propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. The scheme is based on the general ideas proposed in [1] for the two dimensional incompressible Navier-Stokes equations and is then extended to three space dim...

متن کامل

Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes

In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...

متن کامل

Seismic Wave Simulation for Complex Rheologies on Unstructured Meshes

The possibility of using accurate numerical methods to simulate seismic wavefields on unstructured meshes for complex rheologies is explored. In particular, the Discontinuous Galerkin (DG) finite element method for seismic wave propagation is extended to the rheological types of viscoelasticity, anisotropy and poroelasticity. First is presented the DG method for the elastic isotropic case on te...

متن کامل

Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes

We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...

متن کامل

An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

We design an arbitrary high order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 233  شماره 

صفحات  -

تاریخ انتشار 2013